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Production Analytics

A The goal may be
I Process Understanding , Improvement,
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Survelllance

I Product Development

I Reliability Engineering

I Maintenance Scheduling and Planning
A Tools we use

- Statistical modeling for predictive purposes

I Statistical Process Survelllance
G

I Simple descriptive statistics with exploratory plots
I Design of experiments



Process Survelllance
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A Statistical
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A Real time

A Can be purely
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A Root Cause
Analysis

A Off-line

A Empirical but
process
knowledge is
often needed

STEP I

A Implementing the
solution

A Off-line

A Process and
operational
knowledge are
needed




(Statistical) Process Control

A A process that is operating with only

present is said to be In

statistical control.
A A process that is operating in the presence of

AT

e
10

AT

‘IS said to be out of control.

ne eventual goal of SPC is reduction or
iImination of variability in the process by
entification of assignhable causes.

nis Is usually achieved via a control chart



Control Chart

Upper Control Limit (UCL)

Center Line (CL)

Lower Control Limit (LCL)




Multivariate SPC (MSPC)

AMultiple control charts

I Considering more than a handful of control charts
simultaneously is not feasible

I Probability of a false alarm of this scheme (alarm if
any one of the control charts signals) is greater than
the largest false alarm rate used for an individual
chart T even when assuming the variables are
iIndependent

A Considering the variables individually
ignores the correlation among these
variables which is usually present
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A The control chart is based on a statistic similar
(notthe same)toHo t e | T?istatigtid issed to
generalize the t-test for multivariate data

A It is basically the squared scaled distance from
the mean vector

-

e N Nx- ¢)

A When the number of variables gets really large
and their correlation structure gets more

complicated,
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Latent Structures

A A better approach will then be to consider the
latent structures to reduce the dimensionality of
the problem

A In fact, latent variables can also be individually
monitored using univariate control charts

A However the common practice is to summarize
these latent variables into two statistics

A (We will mainly concern with unsupervised case)
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SPC with PCA Model

T2 Control Chart Q (SPE) Control Chart
for the model PCs for the residual
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Detection

A Detection is still not guaranteed

A The data is averaged twice hence small
disturbances may go undetected

A Many variations of PCA are suggested to remedy
various issues such as serial depence, multiple
regimes, adaptive schemes, etc.

A There is still room for research and development

A Even if detection is perfect , there is still the issue
of diagnosis




Contribution Plots

A Traditionally the fault diagnosis is done
through so called contribution plots

A The contributions of each variable for a
particular T2 or Q statistic are given by

T ..=(x-x% ) C A7C

Contr,i

and
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QContr,i - (xi - X ) (I - Ckc;)

Where L, Is the diagonal matrix of first k
eigenvalues in descending order



Further on Contributions

A Contribution plots can be quite complicated
when number of variables is large

A It can even be misleading in certain situations
and direct the focus on the wrong variables

A It may be necessary to go beyond
unsupervised approach and actually identify
the type of fault when an alarm is signaled

A Other approaches based on machine learning
methods such as classification trees can also
be employed



Process Complexity

APerceived complexity of the processes
favors correspondingly complicated
approaches in data analysis

A Solutions then tend to be case specific or
at least fine-tuned to solve a particular
situation rendering generalization difficult

AProcess expertise can help alleviate this




Sparse PCA

A In Sparse PCA, a penalty is imposed on
the loadings so that small loadings are
pushed to zero in the optimization
procedure

A This causes PCs to consist only of some
Anrel evant o vari abl es

A Different approaches are available

A In this study, we employed the method by
Zhou et al. (2006)




An almost realistic process
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Tennessee Eastman Process

A Accepted to be highly realistic due to its
complexity and used in many academic
studies for methodology development

A Both many simulated faults can be
Introduced

A All suggested methods attempt to tackle the
problem at once

A A slightly skeptical approach reveals a
different picture about the interdependencies
In the system
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The final (sparse) loadings for
14 retained PCs
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) for the TE process.

Nonzero loadings of the second SPC (SPC

for the TE process.
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Nonzero loadings of the first SPC (SPC1

® o3 @N .
© S
e Bern Preero\Te

Nonzero loadings of the remaining 11 SPCs (SPC4-SPCL4) for the TE process.

Nonzero loadings of the third SPC (SPC3) for the TE process.




Behind the scene




